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Abstract: We further discuss a rotating dual giant Wilson loop (D3-brane) solution

constructed in Lorentzian AdS by Drukker et al. The solution is shown to be composed of

a dual giant Wilson loop and a dual giant graviton by minutely examining its shape. Hence

it may be supposed that the dual gauge-theory operator should be a k-th symmetric Wilson

loop with insertions of dual giant graviton operators. To give a convincing argument for this

observation, the classical action of the solution should be evaluated in Euclidean signature.

For this purpose we perform a Wick rotation to the Lorentzian solution by following the

tunneling prescription and obtain Euclidean solutions attaching to a circle or a straight

line on the AdS boundary. The classical action contains a logarithmic divergence which

is proportional to the R-charge. It is consistent with the correlation function of the dual

giant graviton operators. Because of ambiguities concerning regularization, finite terms of

the action do not lead to conclusive evidence. However we may expect that the ambiguities

would cancel by subtracting the action of the D3-brane with a straight-line boundary from

that with a circular boundary. It is really shown that the difference is consistent with

the expectation value of the k-th symmetric Wilson loop. Although our analysis does not

specify the unique dual gauge-theory operator, we discuss possible candidates implied by

the D3-brane computation.
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1. Introduction

One of the long-standing ideas in particle physics is to make a connection between a

Wilson loop in gauge theory and a string-like object like in string theory. In the context of

AdS/CFT correspondence [1], it is proposed that the expectation value of the fundamental

Wilson loop is given by the “area law” of the fundamental string world-sheet attached

to the loop on the AdS boundary [2, 3]. For straight lines and circular loops, the area
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of the string world-sheet is shown to reproduce the expectation value of the Wilson loop

calculated by summing up the planar ladder diagrams in a large ’t Hooft coupling limit

(λ ≡ Ng2
YM → ∞).

One may consider a multiply wrapped Wilson loop or a Wilson loop in higher-

dimensional representation [4]. It can carry a multiple winding number, say k, in terms of

the fundamental representation. Hence a natural candidate for its counterpart is a state

with string charge k . The multi-string state can be described as a spike D-brane solution

with non-trivial electric flux describing the string charge [5]. It is now proposed that an

anti-symmetric representation corresponds to an AdS2×S4 D5-brane [6] called “giant Wil-

son loop,” and a symmetric representation to an AdS2×S2 D3-brane [4, 7, 8] called “dual

giant Wilson loop.” The names are analogy to (dual) giant gravitons [9–11].

With the help of the string charge k , it is possible to consider a new double-scaling

limit, which is different from the usual large N limit. In the case of k-th symmetric

representation, k and N are taken to be large while keeping κ ≡ k
√

λ/4N fixed. The

expectation value of the Wilson loop can be evaluated by using a Gaussian matrix model

and the result completely agrees with the classical action of a D3-brane solution in the

above limit [4].1 Note that the classical action contains non-planar contributions in spite

of large N , because large k fundamental strings are bound on the D3-brane.

As another generalization, an R-charge J may be introduced in analogy with [18].

A string solution rotating in S5 has been constructed as a counterpart of a fundamental

Wilson loop with local operator insertions ZJ and its Hermitian conjugate [19]. Here Z is

a complex scalar field in N=4 SYM and related to a U(1) R-charge. Then an open spin

chain description was discussed.

Remember that the expectation values of Wilson loops are usually discussed in Eu-

clidean signature. Euclidean AdS is important also from the viewpoint of the bulk-

boundary correspondence for local operators with R-charge. When in Lorentzian signature,

the classical solutions that correspond to such operators are introduced at the center of AdS

and do not reach the boundary. That is why a double Wick rotation has to be performed

by following [20]. Then the bulk-boundary correspondence can be discussed by using the

semi-classical bulk modes propagating along the “tunneling trajectory,” connecting the two

points on the boundary.

The tunneling method is also applicable to the fundamental Wilson loop with local

operator insertions [21,22].2 The double Wick rotation for the Lorentzian solution [19] leads

to a Euclidean string solution which attaches to the Wilson loop on the AdS boundary and

propagates along the tunneling trajectory. The classical action of the solution was evaluated

by taking account of boundary terms [22]. Then its relation to the expectation value of

the Wilson loop with local operator insertions was discussed.

1A symmetric Wilson loop cannot be distinguished from a multiply wrapped one in the leading-order

of approximation at strong coupling [12, 13]. See [14] for an argument on a sub-leading contribution in

the string side. The approach based on Gaussian matrix model was argued in [15, 16] and also in a recent

work [17].
2A two-spin string around the tunneling trajectory is also discussed in [23], and also a related work has

been done in [24].
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It has been shown in [22] that a logarithmically divergent term, which is proportional

to the angular momentum, gives the expected contribution of the inserted local opera-

tors [19]. However, the finite term involves subtleties; It depends on the cutoff schemes.

Boundary terms of the string action and a possible normalization constant of the gauge-

theory operator also involve ambiguities. Hence a direct comparison of the string action

with the expectation value of the gauge-theory operator has not succeeded yet. However,

it was found in [22] that the difference between the value of the string action with a circu-

lar boundary and that with a straight boundary does not depend on the schemes utilized

there. Then the difference is consistent with the expectation values of the Wilson loop in

the fundamental representation.

In this paper we extend the analysis to the case with string charge k ≥ 1; We discuss

a rotating D3-brane solution with electric flux. In fact, such a solution has already been

constructed in Lorentzian signature [25].

We first re-investigate the shape of the solution in detail. Then the solution is shown

to be composed of a dual giant Wilson loop and a dual giant graviton [10,11], rather than

a rotating BPS particle. This observation may imply that the dual gauge-theory operator

should be a k-th symmetric Wilson loop with the insertions of dual giant graviton opera-

tors [26,27], rather than ZJ . To give a convincing argument for this observation, the clas-

sical action of the solution should be evaluated in Euclidean signature. Hence for that pur-

pose we construct a Euclidean solution by applying the double Wick rotation for the Lorent-

zian solution. Then we evaluate its classical action by taking account of boundary terms.

The resulting action contains the logarithmic divergence which is consistent with the

inserted dual giant graviton operators carrying an R-charge J . For the finite terms con-

tained in the action, similar subtleties concerning a regularization may be supposed as in

the string case. Our analysis eventually adopts a specific regularizaion scheme, and it does

not give any insights into the subtleties themselves.

However we may expect that the ambiguities would again cancel even in our D3-brane

case by subtracting the action of the D3-brane with a straight-line boundary from that

with a circular boundary. In fact, it is shown that the difference reproduces the ratio of

the expectation values of a straight-line and a circular Wilson loop in the k-th symmetric

representation. As for the corresponding gauge-theory operator, our analysis does not

determine the unique solution. Still, it is possible to deduce some candidates which are

consistent with the D3-brane computation in the gravity side.

This paper is organized as follows: section 2 is a brief review of the tunneling picture.

Its new application to a dual giant graviton is also discussed. Section 3 is also a review

of the rotating D3-brane solution constructed in [25]. We newly find the relation between

the solution and a dual giant graviton solution. In subsection 3.2 a double Wick rotation

is performed to the Lorentzian solution by following the tunneling prescription. The re-

sulting Euclidean solution attaches to a circle or a straight line on the AdS boundary and

propagates along the tunneling trajectory. In section 4 the classical action of the Euclidean

solution is evaluated with a certain regularization. Then in section 5 we discuss some pos-

sible candidates for the dual gauge-theory operator. Section 6 is devoted to a conclusion

and discussions.
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2. Tunneling picture of bulk-boundary correspondence

The bulk-boundary correspondence can be manifestly discussed in Euclidean formulation.

For this purpose the Wick rotation should be performed. But note that we are interested

in the case with an angular momentum, where a subtlety for the Wick rotation exists [20].

Then the tunneling prescription should be utilized. It would be available for later discussion

to give a brief review of the tunneling prescription with the three examples: 1) a BPS

particle (BMN case), 2) a dual giant graviton, 3) a rotating string world-sheet. Note that

the cases 1) and 3) are just reviews of the preceding works, but the case 2) has not been

discussed in the earlier literatures and this is the first attempt.

2.1 Tunneling trajectory of BPS particle

We give a brief review of the tunneling prescription by taking a BPS particle rotating in

S5 with an angular momentum J . Here we assume that J is much less than N .

The AdS5×S5 geometry in global coordinates is given by

ds2

L2
=−cosh2 ρdt2+dρ2+sinh2 ρ

(
dχ2+sin2 χ

(
dϕ2

1+sin2 ϕ1dϕ2
2

))
+ dθ2 + sin2 θdφ2 , (2.1)

C4

L4
= sinh4 ρ sin2 χ sin ϕ1 dt ∧ dχ ∧ dϕ1 ∧ dϕ2 , (2.2)

with a constant dilaton field. The S2 metric in S5 is explicitly written down, since we

consider classical solutions which are localized with respect to the remaining directions.

Thus the S5 part of the RR potential C4 is also irrelevant for the solutions.

A null trajectory of a point particle rotating in S5 is given by

ρ = 0 , θ =
π

2
, φ = t . (2.3)

It is known that the string modes propagating along the trajectory correspond to local

operators with large R-charge [18]. But the trajectory does not reach the boundary and

hence it is not available to discuss the correlation functions of the operators.

A solution for this issue was proposed in [20] and it is based on a semi-classical tunneling

phenomenon. Hence the prescription is called “tunneling picture.” From now on let us see

the tunneling picture. First the trajectory (2.3) should be recaptured with the Poincaré

coordinates of the AdS5 geometry, in which the AdS5×S5 metric becomes

ds2

L2
=

dZ2 − (dX0)
2 + (dX1)

2 + (dX2)
2 + (dX3)

2

Z2
+ dθ2 + sin2 θ dφ2 . (2.4)

Then the trajectory (2.3) is mapped to the following trajectory:

Z =
ℓ

cos t
, X0 = ℓ tan t , X1 = X2 = X3 = 0 , φ = t . (2.5)

Here we have introduced a constant parameter ℓ , which is related to the scale invariance of

the metric (2.4). The trajectory (2.5) satisfies the null condition, Z−2(Ż2 − Ẋ2
0 ) + φ̇2 = 0 ,

and also the equations of motion Ẋ0/Z
2 = 1/ℓ and φ̇ = 1 .
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Here let us see the motion of Z . The null condition and the equations of motion of

X0 and φ lead to

Ż2 + V (Z) = 0 , V (Z) ≡ −Z4/ℓ2 + Z2 .

This equation suggests that the classical solution (2.5) does not reach the boundary Z = 0

because of the potential barrier coming from V (Z) . Thus the trajectory that reaches the

boundary is realized as a trajectory that tunnels the potential barrier.

Such a tunneling trajectory was proposed in [20] via the Wick rotation with respect

to the parameter t as tE = it as well as the target space time coordinate as X4 = iX0 .

We have to consider simultaneously whether the imaginary angular velocity or equivalently

the Wick rotation with respect to the angular direction as φE = iφ and use the ansatz

φE = tE . The resulting tunneling trajectory is given by

Z =
ℓ

cosh tE
, X1 = X2 = X3 = 0 , X4 = ℓ tanh tE . (2.6)

This describes a semi-circle Z2 + X2
4 = ℓ2 in the (Z,X4) plane.

By considering modes propagating along the tunneling trajectory (2.6), we can discuss

a correlation function of the local operators with R-charge. The simplest example would

be the two point function of the BPS operators:

〈
TrFZJ

(
~Xi

)
TrFZ

J( ~Xf

) 〉
. (2.7)

Here the complex scalar field Z is defined as Φ5 + iΦ6. The points ~Xi,f correspond to the

two end points, (X1,X2,X3,X4) = (0, 0, 0,±ℓ), of the tunneling trajectory (2.6).

Another derivation of tunneling null geodesic

There is another derivation of the tunneling null geodesic (2.6). It should take the following

steps:

1. First let us consider the Euclidean AdS by performing the double Wick rotation:

tE = it and φE = iφ .

2. Next we turn to the Euclidean Poincaré coordinates via

Z =
ℓ

f
, X1 =

ℓ

f
sinh ρ sin χ sinϕ1 cos ϕ2 , X2 =

ℓ

f
sinh ρ sin χ sin ϕ1 sin ϕ2 ,

X3 =
ℓ

f
sinh ρ(α sin χ cos ϕ1 −

√
1 − α2 cos χ) , X4 =

ℓ

f
sinh tE cosh ρ , (2.8)

f = cosh tE cosh ρ + sinh ρ(
√

1 − α2 sin χ cos ϕ1 + α cos χ) , (0 ≤ α ≤ 1).

Here a constant parameter α is contained as well as ℓ . It will be related to the shape of

the Wilson loop later. The transformation (2.8) can be decomposed into a series of simple

coordinate transformations as explained in appendix A.

After the double Wick rotation in the first step, the null trajectory (2.3) has been

mapped to the trajectory described by ρ = 0 , θ = π/2 and φE = tE . Then by performing

the transformation (2.8), it is mapped to the tunneling trajectory (2.6).

– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
2

Z/ℓ

X4/ℓ

X3/ℓ

(a)

Z/ℓ

X3/ℓ

(b)

Figure 1: Euclidean dual giant graviton. Its shape is depicted in (a). A time slice at t = 0 of (a)

is plotted in (b).

In subsection 2.2 the above steps are applied to a dual giant graviton solution [10,11],

which corresponds to a local operator carrying an R-charge of order N or larger. In

subsection 2.3 we give a brief review of the Euclidean string solution of [21,22], which was

constructed by applying the above steps to the Lorentzian solution of [19]. In the next

section we apply the above steps to a dual giant Wilson loop (D3-brane) solution rotating

in S5 [25].

2.2 Dual giant graviton around tunneling trajectory

From now on let us discuss the tunneling picture of a dual giant graviton solution. Here

we assume that its angular momentum (R-charge) is the same order as N or larger.

The coordinates t , χ , ϕ1 and ϕ2 are used as the world-volume coordinates of the dual

giant graviton solution. Then the solution will be given by

ρ = ρ : const. , θ =
π

2
, φ = t . (2.9)

The double Wick rotation just changes the last equation of (2.9) to φE = tE.

Next we perform the transformation (2.8). For simplicity the case with α = 0 is

discussed. Let us first concentrate on the slice of the solution on which the relation sinϕ1 =

0 is satisfied. This slice corresponds to the north and the south pole of the S2 spanned

by ϕ1 and ϕ2 . Then the remaining directions of the world-volume are two-dimensional.

Indeed, for sin ϕ1 = 0 , X1 and X2 vanish and the solution in terms of (Z,X3,X4) is given

by a two-dimensional surface depicted in figure 1-(a).

Figure 1-(b) is the cross section of figure 1-(a) at t = 0 , i.e., (Z,X3)-plane at X4 = 0 .

The tunneling trajectory penetrates the plane and the point is located at (Z,X3) = (ℓ, 0) .

As far as Z, X3 and X4 are concerned, all other points on the D3-brane, i.e., the region

0 < ϕ1 < π are contained inside the surface of figure 1-(a). As for X1 and X2 , points on

the solution are in the region: X2
1 + X2

2 ≤ ℓ2 sinh2 ρ .
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The propagation of the dual giant graviton should correspond to a two point function

of the dual giant graviton operators [26,27]:

〈
TrSJ

Z
(
~Xi

)
TrSJ

Z
(
~Xf

) 〉
. (2.10)

Here the trace is taken over the J-th symmetric representation. So far we have assumed

that J is the same order as N or larger, but it may be possible to consider the limit

J ≪ N in (2.10). Then all of non-planar contributions in the dual giant graviton operator

are negligible. After all, (2.10) is reduced to (2.7). In the bulk gravity side a dual giant

graviton shrinks in the same limit and it should be regarded as a BPS particle.

2.3 String world-sheet around tunneling trajectory

Finally let us remember the tunneling picture of a rotating string world-sheet [21,22].

We shall begin with the Lorentzian solution [19]. Taking t and ρ as world-sheet coor-

dinates, it is given by

χ = 0, π , ϕ1 = const. , ϕ2 = const. , sin θ =
1

cosh ρ
, φ = t . (2.11)

Two patches, χ = 0 and χ = π , are attached to straight lines on the boundary at ρ = ∞
and they are sewn together at ρ = 0 . The solution carries an angular momentum from the

infinite past t = −∞ to the infinite future t = ∞ .

As proposed in [19], a natural candidate for the dual gauge-theory operator would be

the Wilson loop operator with local operator insertions:3

WZJ ≡ TrFP
[
ZJ(t = −∞)ei

R

∞

−∞
dt(At+Φ4)Z

J
(t = ∞)ei

R

−∞

∞
dt(At+Φ4)

]
. (2.12)

This operator contains two Wilson lines extending from t = −∞ to t = ∞ . Each of them

corresponds to the line given by (ρ, χ) = (∞, 0) and (∞, π) on which the string world-

sheet is attached. The local operators ZJ and Z
J

may be regarded as a “creation” and

an “annihilation” operator of the R-charge, respectively. The R-charge “created” by ZJ

at the infinite past is carried by the rotating string to the infinite future and then it is

“annihilated” by Z
J

.

Although it is interesting proposal, this Lorentzian picture is not available when calcu-

lating the expectation value of the operator via the classical string action. This is because

the angular momentum is carried from the infinite past to the infinite future, and it does

not reach the boundary. As a result, the operator insertions must be assumed at the infinite

past and future. The situation is just the same as in the case of correlation functions of

local operators with R-charge. In fact, by applying the steps introduced in subsection 2.1,

we can construct a solution corresponding to a Wilson loop with the insertions of local

operators in a finite region on the AdS boundary [21,22].

3See also the explanation in [25].
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Z/ℓ

X3/ℓ

X4/ℓ

(a) α = 0

Z/ℓ

X3/ℓ

X4/ℓ

(b) α = 0.7

Z/ℓ

X3/ℓ

X4/ℓ

(c) α = 1.0

Figure 2: Examples of string world-sheet attached to a circle or a straight line. Figures (a), (b) and

(c) correspond to the case with α = 0, 0.7 and 1.0 , respectively. The world-sheet contains tunneling

trajectory and carries an angular momentum along it. Here t and θ are used as parameters, while

t and σ ≡ arctanh(sin θ) are used in [22].

After performing the steps 1. and 2. in subsection 2.1 to the solution (2.11), the AdS5

part of the resulting solution is given by

Z =
ℓ

cosh tE cosh ρ ± α sinh ρ
, X1 = X2 = 0 ,

X3 =
∓ℓ

√
1 − α2 sinh ρ

cosh tE cosh ρ ± α sinh ρ
, X4 =

ℓ sinh tE cosh ρ

cosh tE cosh ρ ± α sinh ρ
. (2.13)

This is the string solution constructed in [21, 22]. Figures 2-(a), (b) and (c) depict the

solutions with α = 0, 0.7 and 1.0, respectively.

By setting ρ = 0 in (2.13), the solution contains the tunneling trajectory (2.6). In

fact, the solution carries angular momentum from the one end point ~Xi of the tunneling

trajectory (2.6) to the other end point ~Xf .

On the other hand, by taking large ρ limit, the string world-sheet is attached to a

circle (α 6= 1) or a straight line (α = 1) on the AdS boundary Z = 0 .

It was shown in [22] that the action of the string solution reproduces correct ℓ- and

α-dependences of the expectation values of the following operator:

〈
TrFP

[
exp

(∮

C
ds

[
iAµ

(
~X(s)

)
Ẋµ(s) +

√
~̇X2(s)Φ4

(
~X(s)

)])
ZJ

(
~Xi

)
Z

J(
~Xf

)]〉
. (2.14)

The shape of the loop C is the same as that of the boundary of the solution (2.13). Note

that both of ~Xi and ~Xf are located on the loop C .

Here the trace is taken over the fundamental representation. The aim of this paper

is to extend the analysis to a k-th symmetric Wilson loop with local operator insertions.

In the next section we consider the tunneling picture of a rotating dual giant Wilson loop

(D3-brane) solution.
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3. Tunneling picture of dual giant Wilson loop

In this section we discuss a tunneling picture of dual giant Wilson loop. That is, the

rotating string solution in subsection 2.3 is extended to a rotating D3-brane solution.

We first reexamine the rotating D3-brane solution in Lorentzian AdS [25]. It is a

generalization of the string solution (2.11) to the D3-brane case. The shape of the solution

leads us to observe that it is composed of a dual giant Wilson loop and a dual giant graviton.

Then we have to perform the double Wick rotation and the coordinate transformation

in subsection 2.1. After that, the resulting solution is attached to a circle or straight line

on the boundary of Euclidean Poincaré AdS and carrying an angular momentum from a

point on the boundary to another.

3.1 Lorentzian solution and its properties

Here we introduce a rotating dual giant Wilson loop (D3-brane) solution constructed in [25].

Let us begin with the global coordinates (2.1). The coordinates t , ρ , ϕ1 and ϕ2 are

regarded as the world-volume coordinates, and the following ansatz is assumed for the

region 0 ≤ χ ≤ π/2:

χ = χ(ρ) , θ = θ(ρ) , φ = t , Ftρ =
L2

2πα′
F (ρ) . (3.1)

Here Ftρ is an electric flux induced by smeared string charges. Under this ansatz, the Dirac-

Born-Infeld (DBI) action and the Wess-Zumino (WZ) term for the region 0 ≤ χ ≤ π/2 are

simplified as

SDBI = −2N

π

∫
dtdρ sinh2 ρ sin2 χ

√
(cosh2 ρ − sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2 , (3.2)

SWZ = −2N

π

∫
dtdρ sinh4 ρ sin2 χχ′ , (3.3)

where we have used the definition of D3-brane tension

TD3 ≡ 1

(2π)3l4sgs
=

N

2π2L4
.

It is still difficult to find a classical solution even after assuming the ansatz. A sensible way

is to require the solution to preserve some supersymmetries. Then it is possible to find a

solution by solving BPS equations rather than complicated equations of motion. In fact,

the solution concerned here has been derived by requiring a quarter BPS condition [25].

The solution of [25] is given by

sin χ(ρ) =
C2 coth ρ√
cosh2 ρ − C2

1

, sin θ(ρ) =
C1

cosh ρ
, (3.4)

F (ρ) = − cosh4 ρ − C2
1

cosh2 ρ
√

cosh2 ρ − C2
1 − C2

2 coth2 ρ
. (3.5)

– 9 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
2

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

tanh ρ cos χ

tanh ρ sin χ

(a) C1 = 0

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

tanh ρ cos χ

tanh ρ sin χ

(b) C1 = 0.9

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

tanh ρ cos χ

tanh ρ sin χ

(c) C1 = 1.2

φ

θ

ρ = ∞

ρ = ρmin

(d) S5 part

Figure 3: The D3-brane solution in the global coordinates. For various values of C1 and C2 it is

numerically plotted.

For the region π/2 ≤ χ ≤ π the following replacement is necessary: χ(ρ) → π − χ(ρ) and

F (ρ) → −F (ρ) .

The two constant parameters C1 and C2 are related to two conserved charges, an

angular momentum J and a string charge k. The parameter C2 is related to k through

C2 =
k
√

λ

4N
≡ κ . (3.6)

Thus C2 is nothing but κ in the notation of [4]. On the other hand, J is given by

J = 2 × 2N

π
C2C

2
1

∫
dρ

(cosh2 ρ − C2
1)2 + C2

2 cosh4 ρ

(cosh2 ρ − C2
1 )2 cosh2 ρ

√
cosh2 ρ − C2

1 − C2
2 coth2 ρ

. (3.7)

The overall factor 2 appears taking account of the two patches.

Each D3-brane is attached to the AdS boundary ρ = ∞ at χ = 0 and π . Two patches

with 0 ≤ χ ≤ π/2 and π/2 ≤ χ ≤ π are sewn together smoothly at χ = π/2 . The radial

coordinate ρ takes the minimal value, ρmin , at χ = π/2 .4

Some typical solutions are numerically plotted in figure 3 . Figures 3-(a), (b) and (c)

show the (ρ, χ) plane with an arbitrary (t, ϕ1, ϕ2) for C1 = 0 , 0.9 and 1.2, respectively. In

particular, figure 3-(a) corresponds to the non-rotating Drukker-Fiol solution [4]. The radial

and the angular coordinates of these figures are taken to be tanh ρ and χ , respectively.

Each broken line corresponds to the boundary of the AdS5 (ρ = ∞) and three solid lines

in each of the figures show the solutions with C2 = 1.0 , 0.1 and 0.01 from the top down.

Figure 3-(d) describes a typical configuration θ = θ(ρ) of the solution on S5 for a

fixed t. When ρ = ∞ , the solution is sitting at the north pole (θ = 0). As ρ decreases, θ

4For the solution with χ(ρ) = 0 , i.e., the solution with C1 ≤ 1 and C2 → 0 , we define ρmin = 0 .
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Figure 4: The values of J/N and J/k
√

λ as functions of C1.

increases. At ρ = ρmin , it comes to the turning point, where θ takes its maximal value. It

is symmetric with respect to this point. From the ansatz φ = t, it is rotating in S5 .

Each point on the curves in figures 3-(a), (b) and (c) corresponds to a three-dimensional

space parametrized by (t, ϕ1, ϕ2). Each S2 parametrized by (ϕ1, ϕ2) is centered at the

horizontal axis. Its radius is given by L sinh ρ sin χ and greater than LC2 . Hence, when

C2 is kept finite, the radius of the S2 is much larger than the string length in the large λ

limit.

Figure 3-(c) shows a typical behavior of the solution with C1 > 1 . For a small value of

C2 , the solution looks like a dual giant graviton with thin spikes sticking out of the north

and the south poles. As C2 increases, the radius of the spike becomes larger and the shape

of dual giant graviton tends to be indistinguishable. Also in the case with C1 ≤ 1 , it is

hard to find the dual giant graviton even for small values of C2 as shown in figures 3-(a)

and (b).

We shall examine the behavior of J as a function of C1 for a fixed value of C2 . Each

curve in figure 4-(a) shows the behavior of J/N with C2 = 1, 0.1 and 0.01 from the top

down. In the limit C2 → 0 , the curve asymptotically approaches the following line:

J

N
= 0 (C1 ≤ 1) ,

J

N
= C2

1 − 1 = sinh2 ρmin (C1 ≥ 1) . (3.8)

The curve J/N = sinh2 ρmin corresponds to the angular momentum of the dual giant

graviton whose S3-radius is given by sinh ρmin =
√

C2
1 − 1 [10,11]. Figure 4-(b) depicts the

ratio J/k
√

λ in the limit C2 → 0 .

For finite k the radius of each S2 becomes much smaller than the string length for the

region ρ > arccoshC1 . Hence the analysis with DBI action may not be reliable because of

possible α′-corrections. However, a reasonable result has been obtained even for a single

string case k = 1 and thus the DBI analysis seems to work well even in this case.5 Now

we have no obvious reason to believe it but guess that the corrections cancel each other

possibly due to the supersymmetries preserved by the solution.

5In particular, by setting k = 1 and C1 = 1 the D3-brane solution formally reproduces the string solution

in the previous section.
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3.2 Dual giant Wilson loop around tunneling trajectory

Let us now discuss the double Wick rotation and the coordinate transformation (2.8) for

the rotating D3-brane solution given by (3.4) and (3.5).

First let us consider the Wick rotation. Here note that an imaginary electric flux

FtEρ = −i(L2/2πα′)F (ρ) should be considered in addition to the double Wick rotation

tE = it and φE = iφ . Then the solution is given by

sin χ(ρ) =
C2 coth ρ√
cosh2 ρ − C2

1

, sin θ(ρ) =
C1

cosh ρ
, φE = tE , (3.9)

F (ρ) = − cosh4 ρ − C2
1

cosh2 ρ
√

cosh2 ρ − C2
1 − C2

2 coth2 ρ
. (3.10)

Next the solution is mapped via (2.8) and then we have the following D3-brane solution in

the Euclidean Poincaré coordinate:

Z =
ℓ

f
, X1 =

ℓ

f
sinh ρ sin χ(ρ) sin ϕ1 cos ϕ2 , X2 =

ℓ

f
sinh ρ sin χ(ρ) sin ϕ1 sin ϕ2 ,

X3 =
ℓ

f
sinh ρ(α sin χ(ρ) cos ϕ1 −

√
1 − α2 cos χ(ρ)) , X4 =

ℓ

f
sinh tE cosh ρ , (3.11)

f = cosh tE cosh ρ + sinh ρ(
√

1 − α2 sin χ(ρ) cos ϕ1 + α cos χ(ρ)) .

Now the function χ(ρ) is defined by the first equation of (3.9). The shape of the solution

is numerically plotted for some values of C1 and C2 in figures 5 and 6.

In order to see the relation to the Wilson loop, we shall examine the boundary behavior

of the solution (3.11) by taking the limit ρ → ∞ . Then, for α 6= 1 , the boundary of the

solution is given by the following trajectory on the AdS boundary:

Z = X1 = X2 = 0 , X3 =
∓ℓ

√
1 − α2

cosh tE ± α
, X4 =

ℓ sinh tE
cosh tE ± α

. (3.12)

The upper (the lower) sign implies the region with 0 ≤ χ ≤ π/2 (π/2 ≤ χ ≤ π). This is a

circle with the radius ℓ/
√

1 − α2 on the (X3,X4)-plane. Its center is located at (X3,X4) =

(αℓ/
√

1 − α2, 0) .

For α = 1 , the circle (3.12), except for tE = 0 , becomes an infinite line, X3 = 0 .

That is, the D3-brane is attached to a straight line on the AdS boundary and extended

infinitely into the bulk AdS space. This infinitely extended part of the D3-brane can be

found by carefully considering tE = 0 . For example, let us take the large ρ limit of the

solution (3.11) after setting tE = 0 . Then we reach the AdS boundary (Z = 0) on the patch

with 0 ≤ χ ≤ π/2 but we go to the region at the vicinity of Z ∼ ∞ on the other patch

π/2 ≤ χ ≤ π . It is easy to check that, for α = 1 ,
√

X2
1 + X2

2 + X2
3/Z → C2 in the large

ρ limit. This means that the solution asymptotically satisfies the linear ansatz used in [4].

Figures 5 and 6 are some numerical plots of the D3-brane solution with indicated

values of C1, C2 and α . Figure 5 depicts two-dimensional surfaces specified by sinϕ1 = 0,

and figure 6 expresses their cross sections at X4 = 0. In particular, figures 5-(d) and 6-(d)

correspond to the non-rotating Drukker-Fiol solution [4].
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(c) (C1, C2, α) = (1.2, 0.1, 1)
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X4/ℓ

(d) (C1, C2, α) = (0, 0.1, 0)

Figure 5: Euclidean D3-brane solution with various values of C1, C2 and α . Figure (d) corresponds

to the non-rotating Drukker-Fiol solution [4].

From figures 1, 5 and 6, it is manifestly observed again that the solution with (C1, C2) =

(1.2, 0.1) is composed of a dual giant graviton propagating along the tunneling trajectory

and a spike D3-brane solution. For the values of C1 and C2 , the presence of the dual giant

graviton is obvious. As C2 increases or C1 decreases, the spike tends to be wider compared

to the radius of the dual giant graviton and absorbs it.

Thus the solution (3.11) is attached to a circle or a straight line on the Poincaré AdS

boundary and it is carrying an angular momentum J from a point on the boundary to

another.

Finally we shall give a comment on the operator corresponding to the Euclidean D3-

brane solution. As we have already explained, a natural candidate should be a circular or

a straight-line Wilson loop in k-th symmetric representation with local operator insertions.

However, for the solutions with J of order N or larger, it may be necessary to take account

of non-planar contributions for the local operators. That is, we may have to replace ZJ

with the dual giant graviton operator like (2.10). In fact, in the dual gravity side, the

rotating D3-brane is composed of a dual giant Wilson loop and a dual giant graviton. We

will further discuss the corresponding gauge-theory operator again in section 5.
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Figure 6: The time slices of figure 5 at t = 0 .

4. Evaluation of D3-brane action

Let us evaluate the classical action of the Euclidean D3-brane solution. For simplicity we

omit the subscript “E” hereafter. All t and φ in the following should be understood as tE
and φE .

In addition to the DBI action SDBI and the WZ term SWZ, we have to add appropriate

boundary terms to adjust the boundary conditions properly. First of all, it is necessary to

consider the usual boundary term for the Legendre transformation of the radial coordinate

u = 1/Z of the AdS5 [28]. Then we have to introduce additional boundary terms for other

Legendre transformations because the solution carries the conserved charges: the string

charge k and the angular momentum J .

After all, the following summation should be considered as the total action:

Stotal = SDBI + SWZ + Sφ + SA + Su . (4.1)

The last three terms are the boundary terms for the Legendre transformations with respect

to the angle variable φ , the gauge potential A and the radial coordinate u = 1/Z .

For the solution we consider, all the terms in (4.1) contain divergences. Hence it is

necessary to introduce cutoffs tmin , tmax and ρmax, and restrict the range of the integration

as

tmin < t < tmax , ρmin < ρ < ρmax , 0 ≤ ϕ1 ≤ π , 0 ≤ ϕ2 ≤ 2π .

– 14 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
2

Remember that ρmin is defined by sin χ(ρmin) = 1 , or ρmin = 0 for the solution with

χ(ρ) = 0 .

We use two notations of the world-volume coordinate hereafter. The one is the notation

we used so far, and ρ is regarded as a world-volume coordinate. Then we have to consider

the two regions 0 ≤ χ ≤ π/2 and π/2 ≤ χ ≤ π . The other is to use χ as a world-

volume coordinate, instead of ρ . Then the whole solution can be covered with a single

patch. Hereafter we shall occasionally use this single-patch notation, where the range of

the parameter χ is restricted as χmin < χ < χmax with χmin = χ(ρmax) and χmax =

π − χ(ρmax) .6

Before going to the calculation, it would be helpful to remember the relation between

our analysis and the paper [22], in which the computation in the string case has been

done. It has been found in [22] that the finite term of the action depends on the cutoff

scheme. There are also subtleties concerning the definition of the boundary terms for

the string action; It is not obvious whether the prescription proposed in [28] is naively

applicable to the case with the R-charge. Although these issues have not been solved yet,

it is proposed that these ambiguities would cancel if the string action for a straight line

should be subtracted from that for a circle. Indeed, the subtraction gives the same result for

two cutoff schemes utilized there. Then the result reproduces the ratio of the expectation

values of the straight Wilson line to the circular Wilson loop.

We expect a similar cutoff scheme dependence in our D3-brane case. There are even-

tually the same ambiguities of boundary terms, and the issue of the normalization of the

operator should be considered even in our case. However, resolving these subtleties is be-

yond the scope of the present paper. In fact, since our analysis adopts a specific cutoff

scheme, it is just blind to a possible cutoff scheme dependence. In the following, we sup-

pose the proposal of [22]; We evaluate the α- and ℓ-dependence of each term in (4.1) and

calculate the difference Stotal|α6=1 − Stotal|α=1 . Then we see whether the result reproduces

the ratio of the expectation value of the straight-line Wilson loop to that of the circular

Wilson loop.

In order to make our discussion clear, we shall summarize below the relevant steps

of the calculation and the results only. We refer the readers, who are interested in the

detailed calculations, to appendices.

4.1 Evaluation of SDBI + SWZ

The aim here is to evaluate the contributions coming from the DBI action and the WZ

term:

SDBI + SWZ =

∫
dtdρdϕ1dϕ2 L

= TD3

∫
dtdρdϕ1dϕ2

√
det(Gab + 2πα′Fab) − TD3

∫
Pα[C4] . (4.2)

Recall that there are contributions from two patches, though it is not written down explic-

itly. Our notation will be explained shortly.

6Note that, for the solution with χ(ρ) = 0 , we need to take ρ as a world volume coordinate.
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Remember that the solution (3.11) should be derived from the action defined on the

double Wick rotated geometry:

ds2

L2
=

dZ2 + (dX1)
2 + (dX2)

2 + (dX3)
2 + (dX4)

2

Z2
+ dθ2 − sin2 θdφ2 , (4.3)

and the imaginary ansatz for the electric flux:

Ftρ = −i
L2

2πα′
F . (4.4)

The explicit form of SDBI is

SDBI = 2 × 2N

π

∫ tmax

tmin

dt

∫ ρmax

ρmin

dρ
C3

2 (cosh4 ρ − C2
1 ) cosh2 ρ

(cosh2 ρ − C2
1 )2

√
cosh2 ρ − C2

1 − C2
2 coth2 ρ

. (4.5)

The overall factor 2 implies that there are two patches. Possible dependence on α and ℓ

arises only through the definition of the cutoffs.

As for the WZ term, there is an ambiguity related to the gauge transformation: Under

the gauge transformation the RR potential may change by an exact form, and it may affect

the value of the WZ term since boundaries of the D3-brane should be taken into account.

In order to fix this ambiguity, we just follow the proposal of [25] and use the following

RR potential,

C4 =
L4

Z4
dX4 ∧ dX1 ∧ dX2 ∧ dX3 . (4.6)

The pull back of the RR potential on the D3-brane solution is represented by Pα[C4] and

defined on the space spanned by (t, χ, ϕ1, ϕ2) .7 As it can be seen from (3.11) , the pull

back depends on α but it is independent of ℓ . The solutions with different values of α

are related through coordinate transformation. This is the case for the pull backs with

different α , and the WZ term

SWZ = −TD3

∫
Pα[C4] (4.7)

depends on α through the boundary term.

In order to evaluate the WZ term, it is convenient to introduce a three form Λα
3 as

follows:

Pα[C4] − P[C̃4] = dΛα
3 . (4.8)

Here P[C̃4] is written in terms of (t, χ, ϕ1, ϕ2) as

P[C̃4] = L4 sinh4 ρ(χ) sin2 χ sin ϕ1 dt ∧ dχ ∧ dϕ1 ∧ dϕ2 , (4.9)

where ρ(χ) is the inverse function of χ = χ(ρ) (and also χ = π − χ(ρ)) and the explicit

form of Λα
3 is given in appendix B. Note that the DBI action (4.5) can be written as8

SDBI = TD3

∫
P[C̃4] . (4.10)

7We use the single-patch notation to discuss the WZ term.
8This just means the fact that SDBI + SWZ = 0 in the original global coordinate.
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By using (4.7), (4.8) and (4.10), we obtain the following expression,

SDBI + SWZ = −TD3

∫

b
Λα

3 . (4.11)

Here the subscript “b” implies that the integral is over the boundary of the space

parametrized by (t, χ, ϕ1, ϕ2) .

The non-vanishing components of Λα
3 are as follows:

Λα
3 = (Λα

3 )tχϕ2
dt ∧ dχ ∧ dϕ2 + (Λα

3 )tϕ1ϕ2
dt ∧ dϕ1 ∧ dϕ2 + (Λα

3 )χϕ1ϕ2
dχ ∧ dϕ1 ∧ dϕ2 .

The explicit forms are given by (B.11) with (B.4) and (B.6)–(B.10). Then the right-hand

side of (4.11) can be rewritten as
∫

b
Λα

3 =

∫ tmax

tmin

dt

∫ χmax

χmin

dχ

∫ 2π

0
dϕ2

[
(Λα

3 )tχϕ2

]ϕ1=π

ϕ1=0
−

∫ tmax

tmin

dt

∫ π

0
dϕ1

∫ 2π

0
dϕ2

[
(Λα

3 )tϕ1ϕ2

]χmax

χmin

+

∫ χmax

χmin

dχ

∫ π

0
dϕ1

∫ 2π

0
dϕ2

[
(Λα

3 )χϕ1ϕ2

]tmax

tmin

. (4.12)

All the integrands in (4.12) obviously are independent of ℓ . The ℓ-dependence might arise

through the cutoffs ρmax and tmin,max , but the integrals actually converge and do not

depend on ℓ . The α-dependence of the integrals is discussed in appendices B and C. Here

we just summarize the results:

1. 1st-term: (Λα
3 )tχϕ2

-term

This term vanishes thanks to the following relation (see (B.4) and (B.6)):

(Λα
3 )tχϕ2

∣∣∣
ϕ1=0

= (Λα
3 )tχϕ2

∣∣∣
ϕ1=π

= 0 .

2. 2nd-term: (Λα
3 )tϕ1ϕ2

-term

A detailed calculation is summarized in appendix C.1. Here we rely on a numerical

calculation in a step of the integrals. The result is as follows:
∫ tmax

tmin

dt

∫ π

0
dϕ1

∫ 2π

0
dϕ2

[
(Λα

3 )tϕ1ϕ2

]χmax

χmin

|tmin,max| , ρmax→∞−−−−−−−−−−−−→
{

4π2L4(arcsinhC2 − C2

√
1 + C2

2 ) (α = 1)

0 (α 6= 1)
.

3. 3rd-term: (Λα
3 )χϕ1ϕ2

-term

As explained in appendix C.2, this term is independent of α in the large |tmin,max|
limit. The integral is performed over the boundary at t = tmin,max and it is localized

near the “points” where the local operators are inserted. Therefore the result should

not depend on α , because α describes the global structure of the solution.

In summary, SDBI + SWZ is given by

SDBI + SWZ = const. +





2N
(
arcsinhC2 − C2

√
1 + C2

2

)
(α = 1)

0 (α 6= 1)
. (4.13)

Here “const.” is a finite constant independent of α and ℓ , but it may depend on C1 and

C2 .
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4.2 Evaluation of Sφ + SA + Su

Next we discuss the boundary terms Sφ, SA and Su .

The boundary terms Sφ, SA and Su are defined, respectively, as

Sφ = −
∫ ρmax

ρmin

dρdϕ1dϕ2

[
∂L
∂φ̇

φ

]tmax

tmin

, (4.14)

SA = −
∫ ρmax

ρmin

dρdϕ1dϕ2

[
∂L

∂Ftρ
Aρ

]tmax

tmin

, (4.15)

Su = −
∫ ρmax

ρmin

dρdϕ1dϕ2

[
∂L
∂u̇

u

]tmax

tmin

−
∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂u′

u

∣∣∣∣
ρmax

. (4.16)

There are implicitly contributions from the two patches.

As for (4.14) and (4.15), the dependence on α and ℓ may come only from the cutoffs.

By performing ρ-integrals and summing contributions from the two patches, we have the

following results:

Sφ = (tmax − tmin)|J | , (4.17)

SA = 2 × 2N

π

∫ tmax

tmin

dt

∫ ρmax

ρmin

dρC2
cosh4 ρ − C2

1

cosh2 ρ
√

cosh2 ρ − C2
1 − C2

2 coth2 ρ

=
4N

π
(tmax − tmin)C2

√
−C2

1 sinh2 ρmax + cosh2 ρmax(sinh2 ρmax − C2
2 )

cosh ρmax
.

Then let us consider (4.16). It is composed of two terms. The first term gives α- and

ℓ-independent contribution as explained in appendix D.1, while the second term depends

on α and ℓ . By using u = 1/Z and substituting the solution, the second term can be

rewritten as

2πL4C2TD3

√
cosh2 ρmax − C2

1 − C2
2 coth2 ρmax

∫ π

0
dϕ1 sin ϕ1

∫ tmax

tmin

dt
Z ′

Z

∣∣∣∣
ρmax

. (4.18)

Here Z ′/Z is given by
Z ′

Z
= −A cosh t + B

C cosh t + D
,

with the symbols A , B , C and D defined, respectively, as

A = sinh ρ ,

B =
√

1 − α2 cos ϕ1(cosh ρ sin χ + sinh ρ cos χχ′) + α(cosh ρ cos χ − sinh ρ sin χχ′) ,

C = cosh ρ ,

D = sinh ρ(
√

1 − α2 sin χ cos ϕ1 + α cos χ) ,

for the patch with 0 ≤ χ ≤ π/2. The terms for the other patch π/2 ≤ χ ≤ π are given by

the usual replacement χ(ρ) → π − χ(ρ) .
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The t-integral can analytically be performed and the result is

∫ tmax

tmin

dt
Z ′

Z
=

[
− A

C
t − 2(−BC + AD)

C
√

C2 − D2
arctan

(
−

√
C − D

C + D
tanh

( t

2

))]tmax

tmin

. (4.19)

Then the ϕ1-integral has to be performed. The first term in (4.19) does not depend on ϕ1 .

Hence the ϕ1-integral can be easily carried out and the result is

−2 × 2N

π
C2(tmax − tmin)

√
−C2

1 sinh2 ρmax + cosh2 ρmax(sinh2 ρmax − C2
2 )

cosh ρmax
.

The overall factor 2 comes from taking the two patches. This term exactly cancels the

boundary term SA .

The ϕ1-dependence of the second term in (4.19) is a little bit complicated. The ϕ1-

integral is evaluated in the large |tmin,max| and large ρmax limit in appendix D.2. The result

of ϕ1-integral depends on the patches and also on α . The convergence of the integral again

assures that the result does not depend on ℓ, i.e., possible dependences arise only through

the cutoffs since Z ′/Z is independent of ℓ . For the detailed calculation, see appendix D.2.

After all, we have shown that

Su + SA = const. +

{
4NC2

√
1 + C2

2 (α = 1)

0 (α 6= 1)
.

By gathering the results, Sφ + SA + Su has been evaluated as follows:

Sφ + SA + Su = const. + 2|J | log
(

2ℓ

ǫ

)
+

{
4NC2

√
1 + C2

2 (α = 1)

0 (α 6= 1)
. (4.20)

The cutoff ǫ is defined as

−tmin = tmax ≡ log(2ℓ/ǫ) .

This definition is equivalent to the standard cutoff Z = ǫ imposed at the center ρ = 0 of

the D3-brane in the equal t slice in terms of the original global coordinates.

4.3 Total action

By gathering (4.13) and (4.20), the total action is given by

Stotal = f(C1, C2) + 2|J | log
(2ℓ

ǫ

)
+

{
2N(arcsinh C2 + C2

√
1 + C2

2 ) (α = 1)

0 (α 6= 1)
. (4.21)

Here f(C1, C2) is a function of C1 and C2 . This reproduces the result of [22] by setting

k = 1 and taking large N .

At first sight, it might be curious to find the result of Drukker-Fiol for a circular loop [4]

with inverse sign in the third term of a straight line (α = 1) . But note that the third term

itself does not make sense, because it is just a part of the total action.
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As we have mentioned at the beginning of this section, our analysis may depend on the

regularization scheme, i.e., there may be scheme dependence as in [22]. It is also necessary

to consider the definition of the boundary terms more carefully and to take account of a

possible normalization constant of the gauge-theory operator. At least, from the current

understanding, it is not possible to compare the finite constant in (4.21) directly with the

expectation value of the Wilson loop.

Instead of comparing (4.21) directly with Wilson loop expectation values, we take the

difference of the total action as

Stotal|α6=1 − Stotal|α=1 , (4.22)

and compare it with the difference between a circular Wilson loop and a straight Wilson

line, without R-charge. In fact, the difference (4.22) with (4.21) properly reproduces the

result of the Drukker-Fiol [4]. Inversely speaking, this prescription works well even for the

D3-brane solution. Thus our result gives a non-trivial support for the proposal in [22].

It is very important to refine the regularization scheme and compare not the difference

of the action but the value e−Stotal itself with the expectation value of the Wilson loop with

local operator insertions. We leave this important issue for a future work.

Consistency with J → 0 limit

It may be interesting to see that (4.21) is consistent with J → 0 limit. It is not obvious to

check whether (4.21) really reproduces the result of [4]. Here an ingredient of importance

is the constant term f(C1, C2) in (4.21). In the case with J = 0 , we need to compute

f(0, C2) .9 It is still too complicated to do analytically, so we have numerically evaluated

it. The result supports that

f(0, C2) = −2N(arcsinh C2 + C2

√
1 + C2

2 ) . (4.23)

Thus (4.21) reduces to

Stotal =

{
0 (α = 1)

−2N(arcsinh C2 + C2

√
1 + C2

2 ) (α 6= 1)
. (4.24)

This is nothing but the result of [4]. The mechanism to reproduce (4.24) is somewhat non-

trivial, because it reappears from different integrals. The problem for the normalization

of the Wilson loop might be clarified by investigating the behavior of f(C1, C2) more in

detail.

Interpretation of ℓ dependence

The ℓ-dependence of (4.21) should come from the contraction of local operators inserted

in the loop. Then they have to have conformal dimension J due to the agreement of R-

charge. This ℓ-dependence is consistent with the expectation value of the Wilson loop with

the insertions of ZJ and its complex conjugate [19].

9More precisely, it is necessary to evaluate (C.5) and (D.2) with C1 = 0 . In particular, in computing

(C.5), the only contribution comes from the first term in (B.10) at t = tmax .
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However, the identification of [19] should be modified to realize the fact that the

solution is composed of the dual giant Wilson loop and a dual giant graviton rather than

a BPS particle. A key observation is that the ℓ-dependence is also consistent with the

propagator of dual giant gravitons. In the next section, we will propose some candidates

for the dual gauge-theory operator based on this observation.

5. What is the corresponding Wilson loop?

Finally let us discuss the Wilson loop corresponding to the D3-brane solution. Based on

the observation explained at the end of the previous section, the local operators inserted in

the loop should be introduced by taking account of the non-planar contributions. It seems

reasonable to consider a dual giant graviton operator ZM
N as an inserted operator (Here M

and N are the indices of J-th symmetric representation and its conjugate representation).

Thus a plausible candidate for the gauge-theory operator corresponding to the Eu-

clidean D3-brane solution would possibly be the following:

ΓCM
BN Γ̃AP

DQ

[
W ~Xi

~Xf

(C)
]
A

B
[
Z

(
~Xi

)]
M

N
[
W ~Xf

~Xi

(C)
]
C

D
[
Z

(
~Xf

)]
P

Q . (5.1)

Here
[
W ~Xf

~Xi

(C)
]
A

B represents the k-th symmetric Wilson line running from ~Xi to ~Xf along

the loop C . At ~X = ~Xi and ~Xf , there are four indices (B,C,N,M) and (D,A,Q,P ) ,

respectively. For the gauge invariance, these indices must be contracted separately at each

of the points with some coefficients ΓCM
BN and Γ̃AP

DQ .

A simple way to contract the indices may be taking ΓCM
BN = δB

CδN
M and Γ̃AP

DQ =

δD
AδQ

P . Then the operator (5.1) just reduces to:

TrSk
W(C)TrSJ

Z
(

~Xi

)
TrSJ

Z
(

~Xf

)
. (5.2)

This is just the multiplication of Wilson loop without local operator insertions with stan-

dard dual giant graviton operators, and it does not reduce to (2.14) when k = 1 and

J ≪ N .

An example of the operator which reduces to (2.14) can be constructed by combining

k-th and J-th symmetric indices into a (k + J)-th symmetric one. We explain this type of

operator by expressing the symmetric indices in terms of fundamental indices as:

ZM
N = Z

{n1,...,nJ}
{m1,...,mJ}

≡ Sm1,...,mJ
m1,...,mJ

Sn1,...,nJ

n1,...,nJ
Zn1

m1
· · ·ZnJ

mJ
,

WA
B = W{b1,...,bk}

{a1,...,ak}
≡ Sa1,...,ak

a1,...,ak
Sb1,...,bk

b1,...,bk
Wb1

a1
· · ·Wbk

ak
.

All the lower-case indices express the (anti-) fundamental indices and the tensor Sn1,...,nJ
m1,...,mJ

is totally symmetric with respect to the upper (or lower) indices. In this notation, the

operator in which k-th and J-th symmetric indices are combined to (k + J)-th symmetric

indices can be written down as

Sc1,...,ck,m1,...,mJ

b1,...,bk,n1,...,nJ
Sa1,...,ak,p1,...,pJ

d1,...,dk,q1,...,qJ

[
W ~Xi

~Xf

]{b1,...,bk}

{a1,...,ak}

[
Z

(
~Xi

)]{n1,...,nJ}

{m1,...,mJ}

[
W ~Xi

~Xf

]{d1,...,dk}

{c1,...,ck}

[
Z

(
~Xf

)]{q1,...,qJ}

{p1,...,pJ}
.
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In the case with k = 1 , this operator can be written as (up to a normalization constant)

TrF

[
W ~Xi

~Xf

(C)Z(Xi)
JW ~Xf

~Xi

(C)Z( ~Xf )J
]

+ multi-trace operators , (5.3)

and it reduces to the operator (2.14) when we assume J ≪ N , since the multi-trace

operators become sub-leading in 1/N .

By assuming other coefficients ΓCM
BN and Γ̃AP

DQ, we can consider more generic Wilson

loops with local operator insertions which seem to be consistent with the expectation value

predicted by the D3-brane action. Hence our analysis does not fix the unique gauge-theory

operator as a dual object of the D3-brane solution. It would be nice to seek the definite

choice of the coefficients ΓCM
BN and Γ̃AP

DQ , for example, via perturbative computation in the

gauge-theory side. We leave this issue as a future work.

6. Conclusion and discussion

We have reexamined a rotating D3-brane solution in Lorentzian signature [25] and discussed

its tunneling picture.

First, we have observed that the solution is composed of a Drukker-Fiol solution [4]

and a dual giant graviton [10, 11]. Then we have performed a double Wick rotation for

the solution by following the prescription of [20] and constructed the solution in Euclidean

AdS. The total classical action of the solution, which includes boundary terms, has been

evaluated with a certain regularization.

The resulting action contains the logarithmic divergence which is proportional to the

angular momentum J . It is consistent with the correlation function of the dual giant

graviton operators with an R-charge J .

For the finite terms contained in the action, there are subtleties concerning the regu-

larization scheme. We used a certain regularizaion scheme and our analysis does not give

any resolution for the subtleties themselves. However we may expect that the ambiguities

would cancel by subtracting the action of the D3-brane with a straight-line boundary from

that with a circular boundary. It has really been shown here that the difference reproduces

the ratio of the expectation value of the k-th symmetric Wilson loop.

Finally we discussed possible candidates for the dual gauge-theory operator which is

consistent with the D3-brane picture. Although our computation does not lead to the

unique candidate, we explained possible structures of the operator; k-th symmetric Wilson

loop contracted with J-th symmetric dual giant graviton operator.

Our results in the gravity side may suggest that the usual prescription to compute the

expectation value of Wilson loop by using the Gaussian matrix model can also be applied

to the present case. We leave these gauge-theory issues as future works.

As a final remark, we would like to emphasize that resolving scheme dependence and

fixing appropriate boundary terms are a very important issue for the direct comparison of

the D3-brane action with the Wilson loop expectation values. We hope we will be back to

this issue.

As an extension of our work, it would also be interesting to try to construct a rotating

D5-brane. In the case of giant Wilson loop the shape of D5-brane is AdS2×S4 . Hence
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the S4 part is expanding in S5 and so it seems difficult to find an appropriate ansatz in

the same way as the case of dual giant Wilson loop. However, from our observation given

in this paper, we can easily guess that the desired solution should be composed of an

AdS2×S4 D5-brane (giant Wilson loop) and a giant graviton. By considering a giant spike

solution [29] and deforming it, it may be possible to find a rotating giant Wilson loop. The

corresponding Wilson loop in the gauge-theory side should be obvious. All we have to do

is to replace the k-th symmetric representation and the dual giant graviton operator with

the k-th anti-symmetric representation and the giant graviton operator.

Furthermore it may be possible to construct a solution composed of dual giant Wilson

loop and giant graviton, or of giant Wilson loop and dual giant graviton. It is nice to try

to find such a solution.

It is also nice to study quantum fluctuations around the rotating D3-brane solution.

The fluctuations around the string solution of [22] have been discussed in [30]. The re-

sulting action is very complicated. But we can clearly see the asymptotic behavior of the

Lagrangian around the boundary and at the center of AdS. It behaves as the semiclassical

action around an AdS2 solution [31]10 around the boundary, while as the pp-wave string

at the center of AdS. The similar behavior should be expected even for the fluctuations

around the D3-brane solution.

We hope that the D-brane dynamics discussed in this paper would be an important

key to clarify some dynamical aspects of (dual) giant Wilson loops.
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A. Coordinate transformation11

The following decomposition of the coordinate transformation (2.8) will be used in the next

appendix:

10For semiclassical approximation of DBI actions around AdS-branes see [32].
11In appendices we omit the subscript “E” of tE and set L = 1 for simplicity.
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1. Change from global coordinates to the Poincaré coordinates:

z =
et

cosh ρ
, r = et tanh ρ , (A.1)

x1 = r sin χ sinϕ1 cos ϕ2 , x2 = r sin χ sinϕ1 sin ϕ2 , (A.2)

x3 = r sin χ cos ϕ1 , x4 = r cos χ . (A.3)

2. Rotation in the (x3, x4)-space:

(
x′

3

x′
4

)
=

(
α −

√
1 − α2

√
1 − α2 α

)(
x3

x4

)
, x′

1,2 = x1,2 , z′ = z . (A.4)

3. Translation into the x′
4-direction:

x′′
4 = x′

4 + 1 , x′′
1,2,3 = x′

1,2,3 , z′′ = z′ . (A.5)

4. Inversion transformation and sign flip of x′′
4 :

Z ′′ =
z′′

(x′′
i )

2 + z′′2
, X ′′

1,2,3 =
x′′

1,2,3

(x′′
i )

2 + z′′2
, X ′′

4 = − x′′
4

(x′′
i )

2 + z′′2
. (A.6)

5. Translation into the X ′′
4 -direction:

X ′
4 = X ′′

4 +
1

2
, X ′

1,2,3 = X ′′
1,2,3 , Z ′ = Z ′′ . (A.7)

6. Scale transformation in five dimensions:

Z = 2ℓZ ′ , Xi = 2ℓX ′
i . (A.8)

B. Derivation of the boundary three form Λα
3

We shall derive the explicit form of Λα
3 in (4.8). For this purpose it is convenient to

consider C4 in (4.6) as the α-dependent four-form on the space spanned by (t, ρ, χ, ϕ1, ϕ2)

by using (2.8):

C4[Z,Xi] = Cα
4 [t, ρ, χ, ϕ1, ϕ2] .

Let us consider Λα
4 defined as

Λα
4 [t, ρ, χ, ϕ2, ϕ2] ≡ Cα

4 [t, ρ, χ, ϕ1, ϕ2] − C̃4[t, ρ, χ, ϕ1, ϕ2] .

Here C̃4[t, ρ, χ, ϕ1, ϕ2] is defined as

C̃4[t, ρ, χ, ϕ1, ϕ2] = sinh4 ρ sin2 χ sin ϕ1

(
dt +

dρ

sinh ρ cosh ρ

)
∧ dχ ∧ dϕ1 ∧ dϕ2. (B.1)

By setting ρ = ρ(χ), it reduces to (4.9). With Λα
4 , dΛα

3 in (4.8) is rewritten as

dΛα
3 = Λα

4 [t, ρ = ρ(χ), χ, ϕ1, ϕ2] .
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First it is easy to check that C̃4[t, ρ, χ, ϕ1, ϕ2] is rewritten as

C̃4[t, ρ, χ, ϕ1, ϕ2] =
1

z4
dx4 ∧ dx1 ∧ dx2 ∧ dx3 . (B.2)

Here (z, xi) are related to (t, ρ, χ, ϕ1, ϕ2) via (A.1)–(A.3). Since the steps 2., 3., 5., and 6.

in the previous subsection keep the form of the four form potentials (4.6) and (B.2), we

have

Λα
4 ≡ 1

Z4
dX4 ∧ dX1 ∧ dX2 ∧ dX3 −

1

z4
dx4 ∧ dx1 ∧ dx2 ∧ dx3

=
1

Z ′′4
dX ′′

4 ∧ dX ′′
1 ∧ dX ′′

2 ∧ dX ′′
3 − 1

z′′4
dx′′

4 ∧ dx′′
1 ∧ dx′′

2 ∧ dx′′
3 .

Here (Z ′′,X ′′
i ) and (z′′, x′′

i ) are related to (t, ρ, χ, ϕ1, ϕ2) via (A.1)–(A.6). With help of (A.6)

we can write Λα
4 in terms of (z′′, x′′

i ) as:

Λα
4 =

2

z′′4
1

g
(z′′dz′′ ∧ ∆3 − z′′

2
Ω4) , (B.3)

∆3 = (x′′
4dx′′

1 − x′′
1dx′′

4) ∧ dx′′
2 ∧ dx′′

3 + (x′′
2dx′′

3 − x′′
3dx′′

2) ∧ dx′′
4 ∧ dx′′

1 ,

Ω4 = dx′′
4 ∧ dx′′

1 ∧ dx′′
2 ∧ dx′′

3 , g = z′′
2
+ (x′′

i )
2 .

We further introduce the polar coordinates (r′′, θ1, θ2, θ3) defined as

x′′
1 = r′′ sin θ1 sin θ2 cos θ3 , x′′

2 = r′′ sin θ1 sin θ2 sin θ3 ,

x′′
3 = r′′ sin θ1 cos θ2 , x′′

4 = r′′ cos θ1 .

By using them, ∆3 and Ω4 can be rewritten into the following forms:

∆3 = r′′
4
sin2 θ1 sin θ2dθ1 ∧ dθ2 ∧ dθ3 ,

Ω4 = r′′
3
sin2 θ1 sin θ2dr′′ ∧ dθ1 ∧ dθ2 ∧ dθ3 .

Then Λα
4 is also rewritten as the exact form:

Λα
4 = dΛ̃α

3 , Λ̃α
3 =

(
− r′′2

z′′2
+ log

(
1 +

r′′2

z′′2

))
∆3

r′′4
. (B.4)

With (A.1)–(A.5) , Λ̃α
3 and ∆3 can be expressed in terms of (t, ρ, χ, ϕ1, ϕ2) . Then z′′ and

r′′ can be rewritten as

z′′
2

=
e2t

cosh2 ρ
, r′′

2
= e2t tanh2 ρ + 2et tanh ρ(α cos χ +

√
1 − α2 sin χ cos ϕ1) + 1 . (B.5)

Now ∆3 is given by

∆3 = (∆3)tχϕ2
dt ∧ dχ ∧ dϕ2 + (∆3)ρχϕ2

dρ ∧ dχ ∧ dϕ2 + (∆3)tϕ1ϕ2
dt ∧ dϕ1 ∧ dϕ2

+ (∆3)ρϕ1ϕ2
dρ ∧ dϕ1 ∧ dϕ2 + (∆3)χϕ1ϕ2

dχ ∧ dϕ1 ∧ dϕ2 ,
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where the non-vanishing components are

(∆3)tχϕ2
= −

√
1 − α2e3t tanh3 ρ sin χ sin2 ϕ1 , (B.6)

(∆3)ρχϕ2
= −

√
1 − α2e3t tanh2 ρ

cosh2 ρ
sin χ sin2 ϕ1 , (B.7)

(∆3)tϕ1ϕ2
= αe3t tanh3 ρ sin3 χ sinϕ1 −

√
1 − α2e3t tanh3 ρ sin2 χ cos χ sin ϕ1 cos ϕ1 ,

(B.8)

(∆3)ρϕ1ϕ2
= αe3t tanh2 ρ

cosh2 ρ
sin3 χ sin ϕ1 −

√
1 − α2e3t tanh2 ρ

cosh2 ρ
sin2 χ cos χ sinϕ1 cos ϕ1 ,

(B.9)

(∆3)χϕ1ϕ2
= e4t tanh4 ρ sin2 χ sin ϕ1 + αe3t tanh3 ρ sin2 χ cos χ sinϕ1

+
√

1 − α2e3t tanh3 ρ sin3 χ sin ϕ1 cos ϕ1 .

(B.10)

Finally Λα
3 is given by

Λα
3 [t, χ, ϕ1, ϕ2] = Λ̃α

3 [t, ρ = ρ(χ), χ, ϕ1, ϕ2] . (B.11)

C. Integral of (Λα
3
)tϕ1ϕ2

and (Λα
3
)χϕ1ϕ2

C.1 (Λα
3 )tϕ1ϕ2

The aim here is to perform the integral,

∫ tmax

tmin

dt

∫ π

0
dϕ1

∫ 2π

0
dϕ2

[
(Λα

3 )tϕ1ϕ2

]χmax

χmin

. (C.1)

The explicit form of the integrand is given by (B.11) with (B.4) and (B.8). For α 6= 1 ,

this integral vanishes in the limit ρmax → ∞ or equivalently in the limit χmin → 0 and

χmax → π . This can be shown by rewriting the integral (C.1) in the form in which a single

sin χ is extracted as an overall factor, i.e., in the form as (sin χ) ×
∫

dt(· · · ) . In this form

we can show that the t-integral still converges. Since the extracted overall factor sin χ

vanishes in the limit ρmax → ∞ , (C.1) vanishes.

However the case with α = 1 is special and then r′′ at t = 0 is given by

r′′
2

= tanh2 ρ + 2 tanh ρ cos χ + 1 (at t = 0) . (C.2)

Therefore r′′ becomes zero at the upper boundary χ = χmax taking the limit χmax → π .

We can also check that r′′2/z′′2 → C2
2 in the same limit. This means that, for finite C2 ,

the integrand of (C.1) tends to diverge at t = 0 in the limit χmax → π . This divergence

cancels the small overall factor sin χ and hence the integral (C.1) may give a finite value

to SWZ . Nevertheless most terms in the integral actually vanish apart from the following

two integrals:
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1.
∫

dtdϕ1dϕ2

[
− 1

z′′2r′′2
e3t tanh3 ρ sin3 χ sin ϕ1

]χmax

χmin

= −4π

∫ tmax

tmin

dt

[
et cosh2 ρ tanh3 ρ sin3 χ

e2t tanh2 ρ + 2et tanh ρ cos χ + 1

]χmax

χmin

= 4π

[
sinh2 ρ sin2 χ

(
arctan

[
1 + tanh ρ cos χ

tanh ρ sin χ

]
+ arctan

[
tanh ρ + cos χ

sinχ

]

− arctan

[
tanh ρ cos χ + e−tmin

tanh ρ sin χ

]
− arctan

[
cos χ + etmax tanh ρ

sinχ

])]χmax

χmin

→ 4πC2
2

[(
0 + 0 − π

2
− π

2

)
−

(π

2
+

π

2
− π

2
− π

2

)]
(|tmin,max| , ρmax → ∞)

(C.3)

= −4π2C2
2 .

In (C.3), among two contributions −π and 0 in the large round bracket, the first one,

i.e., −π , is the contribution from χ = χmax and the second vanishing term is from

the lower boundary χ = χmix .

2.
∫

dtdϕ1dϕ2

[
1

r′′4
log

(
1 +

r′′2

z′′2

)
e3t tanh3 ρ sin3 χ sin ϕ1

]χmax

χmin

= 4π

[
tanh3 ρ sin2 χ

∫
dt sin χet−t + 2 log(cosh ρ)+log(et+e−t+2 tanh ρ cos χ)

(et tanh2 ρ+2 tanh ρ cos χ+e−t)2

]χmax

χmin

.

(C.4)

On the lower boundary χ = χmin , the integrand develops no singularity in the limit

χmin → 0 . As for the behavior of the integrand at the boundary t ∼ tmin , tmax of the

domain of integration, we have

the integrand of (C.4) →





e−tmax
2 log(cosh ρmax)

tanh4 ρmax

sin χmin

−2tmine
3tmin sin χmin

.

Hence the integral is finite in the large ρmax and the large |tmin,max| limit. On the

other hand, the extra overall factor becomes zero in this limit:

tanh3 ρmax sin2 χmin → 0 .

Thus we have

the lower boundary contribution of (C.4) → 0 .

At the upper boundary χ = χmax , by the numerical analysis, we found that

the upper boundary contribution of (C.4) → 4π2
(
C2

2 − C2

√
1 + C2

2 + arcsinhC2

)
.

In summary, we obtain that

(C.4) → 4π2
(
− C2

√
1 + C2

2 + arcsinhC2

)
.
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C.2 (Λα
3 )χϕ1ϕ2

The aim here is to evaluate the α- and ℓ-dependence of the integral:

∫ χmax

χmin

dχ

∫ π

0
dϕ1

∫ 2π

0
dϕ2

[
(Λα

3 )χϕ1ϕ2

]tmax

tmin

. (C.5)

The integrand is given by (B.11) with (B.4), (B.9) and (B.10). Although the integrand

depends only on α , ℓ-dependence may arise through the cutoffs.

Let us examine each of the terms in the integrand. First, the integrals of the terms

in (B.9) and (B.10) which are proportional to e3t vanish in the limit |tmin,max| → ∞ . This

is because the integrals of these terms can be rewritten as e−|tmin,max| ×
∫

dχ(· · · ) in which

the χ-integral gives no divergence.

Next let us consider the term linear in e4t in (B.10) whose power is greater than the

previous case by et . Although the contribution from the lower edge, t = tmin , vanishes,

there may be non-trivial contribution from the upper edge, t = tmax . It is easy to check

the convergence of the integral in the limit tmax → ∞ and ρmax → ∞ . What is more we

can also check that the contribution does not depend on α . This is essentially because the

α-dependence is sub-leading with respect to e−tmax , as can be seen from the expression of

r′′ in (B.5) .12 Hence we understand that the integral (C.5) does not depend on α nor on

ℓ in the large |tmin,max| and ρmax limit.

D. Evaluation of Su

The boundary term Su is composed of the two terms like

Su =

∫ ρmax

ρmin

dρdϕ1dϕ2

[
∂L
∂Ż

Z

]tmax

tmin

+

∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂Z ′

Z

∣∣∣∣
ρmax

. (D.1)

D.1 ρ-integral

It is easy to check that the large |tmin,max| and ρmax limit of the first term in (D.1) converges

to give the following expression:

−2J − 8N

π
C2

∫
dρ

(cosh2 ρ − C2
1 )2 + C2

2 cosh4 ρ

cosh2 ρ(cosh2 ρ − C2
1 )

√
cosh2 ρ − C2

1 − C2
2 coth2 ρ

. (D.2)

Here we have summed contributions from two patches. From this expression, it is clear

that the first term of (D.1) does not depend on α and ℓ . In the case with k ∼ 1 and

C1 = 1 , (D.2) is reduced to the result of [22] as

−2J − 2k
√

λ

π
. (D.3)

12In the case with ρmin = 0 , we need to consider ρ-integral instead of χ-integral. Then for the range

ρ ∼ 0 the same argument can not be applied since r′′ can vanish. However, the α-independence can easily

be checked even for the range by Taylor expanding the log term in (B.4).
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D.2 t-integral

The t-integral of (D.1) is given by (4.18)–(4.19). In the main text, we have performed the

ϕ1-integral of the first term of (4.19). We consider here the second term. In the large

|tmin,max| and large ρmax limit, the second term of (4.19) will be estimated as

1. α = 1

−BC + AD →
{
−1 − C2

2 (χ = χmin)

1 + C2
2 (χ = χmax)

,

C
√

C2 − D2 →
{

cosh ρmax

√
1 + C2

2 (χ = χmin)

cosh ρmax

√
1 + C2

2 (χ = χmax)
,

√
C − D

C + D
tanh

( t

2

)
→





0 (χ = χmin, t = tmax)

0 (χ = χmin, t = tmin)

+∞ (χ = χmax, t = tmax)

−∞ (χ = χmax, t = tmax)

.

The integrand of ϕ1-integral becomes as follows:





0 (χ = χmin, t = tmax)

0 (χ = χmin, t = tmin)

NC2

√
1 + C2

2 sin ϕ1 (χ = χmax, t = tmax)

−NC2

√
1 + C2

2 sin ϕ1 (χ = χmax, t = tmin)

.

2. α 6= 1

−BC + AD →
{

C2

√
1 − α2 cos ϕ1 cosh ρmax (χ = χmin)

C2

√
1 − α2 cos ϕ1 cosh ρmax (χ = χmax)

,

C
√

C2 − D2 →
{√

1 − α2 cosh2 ρmax (χ = χmin)√
1 − α2 cosh2 ρmax (χ = χmax)

,

√
C − D

C + D
tanh

( t

2

)
→





√
1 − α

1 + α
(χ = χmin, t = tmax)

−
√

1 − α

1 + α
(χ = χmin, t = tmin)

√
1 + α

1 − α
(χ = χmax, t = tmax)

−
√

1 + α

1 − α
(χ = χmax, t = tmin)

.
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The integrand of ϕ1-integral becomes as follows:




(2N/π)C2
2 sinϕ1 cos ϕ1arctan

(√
1 − α

1 + α

)
(χ = χmin, t = tmax)

−(2N/π)C2
2 sin ϕ1 cos ϕ1arctan

(√
1 − α

1 + α

)
(χ = χmin, t = tmin)

(2N/π)C2
2 sinϕ1 cos ϕ1arctan

(√
1 + α

1 − α

)
(χ = χmax, t = tmax)

−(2N/π)C2
2 sin ϕ1 cos ϕ1arctan

(√
1 + α

1 − α

)
(χ = χmax, t = tmin)

.

By performing ϕ1-integral, we have

1. α = 1:
∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂Z ′

Z

∣∣∣∣
χmax

= −1

2
SA+4NC2

√
1+C2

2 ,

∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂Z ′

Z

∣∣∣∣
χmin

=−1

2
SA .

2. α 6= 1 :

∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂Z ′

Z

∣∣∣∣
χmax

=

∫ tmax

tmin

dtdϕ1dϕ2
∂L
∂Z ′

Z

∣∣∣∣
χmin

= −1

2
SA .
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